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Note 

An Optimum Time Step Length for 
Convergence to Steady-State Solution 

in Compressible-Flow Calculations 

In making calculations on compressible convection in a closed box (two- 
dimensional problem for argon at 1 atm.) using the implicit factored scheme given by 
Beam and Warming [ 11, we have found that an optimum value of the time step length 
exists beyond which the rate of convergence to a steady state decreases rapidly. Using 
the 3-point-backward implicit scheme (6’= 1, <= 0.5 in [I], no-slip boundary 
conditions at the walls, pressure at a wall derived from the equation for the 
momentum normal to the wall, implicit treatment of boundary conditions and source 
terms) and starting with zero-velocity initial values, it was observed that in a square 
box with side length L = 5 cm, the increase of the gas velocity, d V, in one time step 
increased linearly with the time step length, dt, for values of At < 10d5 set (Courant 
number C < l), levelled off to a maximum (AP’),,, at At z lop4 set (C :Z 10) and 
decreased for still larger values of At, for At > 1O-3 set about proportional to (At)-l 
(see Fig. 1, drawn lines). So the computed acceleration of the gas is large and 
independent of At for small values of At and represents correctly the physical process 
of gas acceleration. For large value of At the computed gas acceleration decreases 
proportional to (At)-’ and does not longer represent the physical process. The 
decrease of the computed gas acceleration appeared to be a consequence of the 
decrease of the computed small negative pressure gradients driving the flow. The use 
of the trapezoidal implicit scheme (0 = 0.5, 5 = 0 in [ 11) gave slightly different 
results, see Fig. 1, dashed lines. By changing the side length L of the cavity and 
repeating the calculation, each time starting from the same zero-velocity initial 
values, it was found that (AV’),,, occurred at a value of the time step length (At),,, 
such that (At),,, zz L/2A, where A is the speed of sound in the gas; see Fig. 2. 
Changing the number of grid points of the uniform mesh at a constant value of L 
changed the Courant number at which (Av),,, occurred but kept (Av),,, itself at 
the same value of At; see Fig. 3. 

As a consequence of the foregoing, the rate of convergence to a steady state, as 
expressed by the value of AV, decreased for At increasing beyond (At),,, for this two- 
dimensional problem. Such behaviour is also shown by the results obtained by 
Mahviladze et al. [2] for compressible convection. From the data given by them a 
relation (At),,, z L/2A can also be deduced. Thompkins et al. [3] report optimum 
values of the time step length in relation to convergence rate for inviscid supersonic 
problems. 
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FIG. 1. Gas acceleration (0, A) and incrrmental change of gas velocity (0, LI) as functions of time 
step iength. Convection problem. Box side length L = 5 cm: dT= 30 deg: number of space intervals: 
17 X 17. 3-point-backward time differencing scheme (drawn lines) and trapezoidal time differencing 
scheme (dashed lines). 

FIG. 2. As Fig. 1. Convection problem. Space intervals: 17 x 17. L = 50 cm, LIT= 200 deg (drawn 
iinesj: L = 2.5 cm, dT = 30 deg (dashed lines). 
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FIG. 3. As Fig. 1. Convection problem L = 2.5 cm, dT = 30 deg. Space intervals: 9 x 9 (A*, 2~) and 
I7X 17 (0,O). 
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FIG. 4. As Fig. 1. Sliding-wall problem. Wall velocity: 5 cm/set; space intervals: 17 X 17. 
2.5 x 2.5 cm box (drawn lines); 2.5 x 50 cm box (dashed lines). 

Analogous observations have been made by us in calculating the flow in a box due 
to a sliding motion of walls; see Fig. 4. From the results obtained here for a 
(L, = 2.5 cm) x (L? = 50 cm) box it can be seen that the behaviour of the gas 
acceleration changes to (At)-‘-dependence in passing the point dt = L,/2A and to 
(dt)-2-dependence in passing the point At = L,/2A. In contrast to the convection 
problem, small positive pressure gradients built up, opposing the gas flow, when At 
increased beyond (At),,, . For the one-dimensional problem obtained by letting 
L? + co, the gas acceleration would have been proportional to (At)-’ for all values of 
At > L 1 /2A and consequently A V, or the convergence rate, independent of At. This is 
in accordance with the remark of Thompkins et al. [3] in their conclusions that one- 
dimensional test examples showed no optimum convergence rate. 

In order to demonstrate that the observed behaviour of the convergence rate is not 
caused by the non-linear or the viscous terms in the full Navier-Stokes equations, we 
solved the (constructed) system of equations 

PC) 

in dimensionless quantities, where m = u,/A. This system of equations is equivalent 
to the wave equation 

a'p 1 ,a2p a$3 
( 1 

GL, ap 7-7 at m . g+p =T’-’ a.u (2) 
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Equations (1) have been solved, using again the Beam and Warming scheme, in a 
closed rectangular box (L, x L, cm) with gravitation G applied over the full X- 
dimension of the box, however only over a part of the Y-dimension in order to drive 
the gas flow, starting always from zero-velocity initial values. The boundary 
conditions used in the Y-direction are 

= 0, @v) = 0, pu: extrapolated to the wall. 
Y=O 

2 P=Lz 

For the X-direction the boundary conditions are 

=o, @u) = 0, 
X=0 

pi’: extrapolated, 
x=L, .r=L, 

for the region in which G = 0, and 

pu: extrapolated, 

for the region in which G # 0, where 

c= -(L2/LI). (G a LI/A’)/{ 1 - exp(-G . L,/A’)}. 

The behaviour of the computed gas acceleration as a function of time step length, box 
dimensions and number of mesh points is the same as described above for the full 
compressible Navier-Stokes equations. 

The behaviour of the convergence rate as outlined above sets a rather severe upper 
bound to the time step length for compressible flow calculations using an implicit 
time differencing scheme. For At < (At),,, (covering also the time step domain in 
which explicit time differencing schemes operate) the computational time step length 
is equal to the physical time step length, a result of the direct method of solving the 
Navier-Stokes equations. For At increasing beyond (At),,,, however. this connection 
between the computational and the physical time step length is gradually lost and the 
former more and more acquires the character of an iteration parameter. Therefore. 
Beam and Warming [I] state that for large Courant numbers the transient solutions 
deviate from the exact solution. Our results now indicate that the point from which 
the computational time step length starts to loose connection with the physical time 
step length is set by the propagation velocity of the waves represented by the partial 
differential equations together with the dimensions of the physical domain for which a 
steady state solution of these equations is sought. It will be clear that the widely used 
technique of increasing the time step length At when a steady state is approaching has 
no point if one is using already At = (At),,,. Regarding CPU time consumption, 
taking account of the larger arithmetic operation count of implicit schemes, implicit 
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finite difference calculations of compressible flows are thus advantageous with respect 
to explicit schemes only if the point At = L/24 occurs at a Courant number C $ 10. 

Calculations of compressible flow in a closed box clearly reveal the effect of time 
step length on convergence rate, as outlined above. In calculations on compressible 
channel flow, a strongly decreased convergence rate, as will occur for time step 
lengths exceeding a problem-related upper bound as described above, may tempt one 
to think that the problem is approaching a steady state. Switching back to a much 
smaller time step length, however, then will reveal the truth. 
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